

Overview

Enlighten Progress Bar is a console progress bar module for Python. (Yes, another one.)
The main advantage of Enlighten is it allows writing to stdout and stderr without any
redirection.

[image: _images/demo.gif]

Installation

PIP

$ pip install enlighten

RPM

RPMs are available in the Fedora [https://fedoraproject.org/] and EPEL [https://fedoraproject.org/wiki/EPEL] repositories

EL6 and EL7 (RHEL/CentOS/Scientific)

(EPEL [https://fedoraproject.org/wiki/EPEL] repositories must be configured [https://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F])

$ yum install python-enlighten

Fedora

$ dnf install python2-enlighten
$ dnf install python3-enlighten

Examples

Basic

For a basic status bar, invoke the Counter class directly.

import time
import enlighten

pbar = enlighten.Counter(total=100, desc='Basic', unit='ticks')
for num in range(100):
 time.sleep(0.1) # Simulate work
 pbar.update()

Advanced

To maintain multiple progress bars simultaneously or write to the console, a manager is required.

Advanced output will only work when the output stream, sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] by default,
is attached to a TTY. get_manager() can be used to get a manager instance.
It will return a disabled Manager instance if the stream is not attached to a TTY
and an enabled instance if it is.

import time
import enlighten

manager = enlighten.get_manager()
ticks = manager.counter(total=100, desc='Ticks', unit='ticks')
tocks = manager.counter(total=20, desc='Tocks', unit='tocks')

for num in range(100):
 time.sleep(0.1) # Simulate work
 print(num)
 ticks.update()
 if not num % 5:
 tocks.update()

manager.stop()

Counters

The Counter class has two output formats, progress bar and counter.

The progress bar format is used when a total is not None [https://docs.python.org/3/library/constants.html#None] and the count is less than the
total. If neither of these conditions are met, the counter format is used:

import time
import enlighten

counter = enlighten.Counter(desc='Basic', unit='ticks')
for num in range(100):
 time.sleep(0.1) # Simulate work
 counter.update()

Color

The bar component of a progress bar can be colored by setting the color keyword argument.
See Series Color for more information about valid colors.

import time
import enlighten

counter = enlighten.Counter(total=100, desc='Colorized', unit='ticks', color='red')
for num in range(100):
 time.sleep(0.1) # Simulate work
counter.update()

Additionally, any part of the progress bar can be colored using counter
formatting and the
color capabilities [https://blessed.readthedocs.io/en/stable/colors.html]
of the underlying Blessed [https://blessed.readthedocs.io/en/stable]
Terminal [https://blessed.readthedocs.io/en/stable/terminal.html].

import enlighten

manager = enlighten.get_manager()

Standard bar format
std_bar_format = u'{desc}{desc_pad}{percentage:3.0f}%|{bar}| ' + \
 u'{count:{len_total}d}/{total:d} ' + \
 u'[{elapsed}<{eta}, {rate:.2f}{unit_pad}{unit}/s]'

Red text
bar_format = manager.term.red(std_bar_format)

Red on white background
bar_format = manager.term.red_on_white(std_bar_format)

X11 colors
bar_format = manager.term.peru_on_seagreen(std_bar_format)

RBG text
bar_format = manager.term.color_rgb(2, 5, 128)(std_bar_format)

RBG background
bar_format = manager.term.on_color_rgb(255, 190, 195)(std_bar_format)

RGB text and background
bar_format = manager.term.on_color_rgb(255, 190, 195)(std_bar_format)
bar_format = manager.term.color_rgb(2, 5, 128)(bar_format)

Apply color to select parts
bar_format = manager.term.red(u'{desc}') + u'{desc_pad}' + \
 manager.term.blue(u'{percentage:3.0f}%') + u'|{bar}|'

Change the background of only the bar
bar_format = u'{desc}{desc_pad}{percentage:3.0f}%|' + \
 manager.term.on_white(u'{bar}') + \
 u'| {count:{len_total}d}/{total:d} ' + \
 u'[{elapsed}<{eta}, {rate:.2f}{unit_pad}{unit}/s]'

Apply to counter
ticks = manager.counter(total=100, desc='Ticks', unit='ticks', bar_format=bar_format)

If the color option is applied to a Counter,
it will override any foreground color applied.

Multicolored

The bar component of a progress bar can be multicolored to track multiple categories in a single
progress bar.

The colors are drawn from right to left in the order they were added.

By default, when multicolored progress bars are used, additional fields are available for
bar_format:

	count_n (int [https://docs.python.org/3/library/functions.html#int]) - Current value of count

	count_0(int [https://docs.python.org/3/library/functions.html#int]) - Remaining count after deducting counts for all subcounters

	percentage_n (float [https://docs.python.org/3/library/functions.html#float]) - Percentage complete

	percentage_0(float [https://docs.python.org/3/library/functions.html#float]) - Remaining percentage after deducting percentages
for all subcounters

When add_subcounter() is called with all_fields set to True [https://docs.python.org/3/library/constants.html#True],
the subcounter will have the additional fields:

	eta_n (str [https://docs.python.org/3/library/stdtypes.html#str]) - Estimated time to completion

	rate_n (float [https://docs.python.org/3/library/functions.html#float]) - Average increments per second since parent was created

More information about bar_format can be found in the
Format section of the API.

One use case for multicolored progress bars is recording the status of a series of tests.
In this example, Failures are red, errors are white, and successes are green. The count of each is
listed in the progress bar.

import random
import time
import enlighten

bar_format = u'{desc}{desc_pad}{percentage:3.0f}%|{bar}| ' + \
 u'S:{count_0:{len_total}d} ' + \
 u'F:{count_2:{len_total}d} ' + \
 u'E:{count_1:{len_total}d} ' + \
 u'[{elapsed}<{eta}, {rate:.2f}{unit_pad}{unit}/s]'

success = enlighten.Counter(total=100, desc='Testing', unit='tests',
 color='green', bar_format=bar_format)
errors = success.add_subcounter('white')
failures = success.add_subcounter('red')

while success.count < 100:
 time.sleep(random.uniform(0.1, 0.3)) # Random processing time
 result = random.randint(0, 10)

 if result == 7:
 errors.update()
 if result in (5, 6):
 failures.update()
 else:
 success.update()

A more complicated example is recording process start-up. In this case, all items will start red,
transition to yellow, and eventually all will be green. The count, percentage, rate, and eta fields
are all derived from the second subcounter added.

import random
import time
import enlighten

services = 100
bar_format = u'{desc}{desc_pad}{percentage_2:3.0f}%|{bar}|' + \
 u' {count_2:{len_total}d}/{total:d} ' + \
 u'[{elapsed}<{eta_2}, {rate_2:.2f}{unit_pad}{unit}/s]'

initializing = enlighten.Counter(total=services, desc='Starting', unit='services',
 color='red', bar_format=bar_format)
starting = initializing.add_subcounter('yellow')
started = initializing.add_subcounter('green', all_fields=True)

while started.count < services:
 remaining = services - initializing.count
 if remaining:
 num = random.randint(0, min(4, remaining))
 initializing.update(num)

 ready = initializing.count - initializing.subcount
 if ready:
 num = random.randint(0, min(3, ready))
 starting.update_from(initializing, num)

 if starting.count:
 num = random.randint(0, min(2, starting.count))
 started.update_from(starting, num)

 time.sleep(random.uniform(0.1, 0.5)) # Random processing time

Additional Examples

	basic - Basic progress bar

	context manager - Managers and counters as context managers

	floats - Support totals and counts that are floats [https://docs.python.org/3/library/functions.html#float]

	multicolored - Multicolored progress bars

	multiple with logging - Nested progress bars and logging

	FTP downloader - Show progress downloading files from FTP

	Multiprocessing queues - Progress bars with queues for IPC

Customization

Enlighten is highly configurable. For information on modifying the output, see the
Series and Format
sections of the Counter documentation.

Common Patterns

Enable / Disable

A program may want to disable progress bars based on a configuration setting as well as if
output redirection occurs.

import sys
import enlighten

Example configuration object
config = {'stream': sys.stdout,
 'useCounter': False}

enableCounter = config['useCounter'] and stream.isatty()
manager = enlighten.Manager(stream=config['stream'], enabled=enableCounter)

The get_manager() function slightly simplifies this

import enlighten

Example configuration object
config = {'stream': None, # Defaults to sys.stdout
 'useCounter': False}

manager = enlighten.get_manager(stream=config['stream'], enabled=config['useCounter'])

Context Managers

Both Counter and Manager
can be used as context managers.

import enlighten

SPLINES = 100

with enlighten.Manager() as manager:
 with manager.counter(total=SPLINES, desc='Reticulating:', unit='splines') as retic:
 for num in range(SPLINES + 1):
 retic.update()

Automatic Updating

Both Counter and Both SubCounter instances can be
called as functions on one or more iterators. A generator is returned which yields each element of
the iterables and then updates the count by 1.

Note

When a Counter instance is called as a function, type checking is lazy
and won't validate an iterable was passed until iteration begins.

import time
import enlighten

flock1 = ['Harry', 'Sally', 'Randy', 'Mandy', 'Danny', 'Joe']
flock2 = ['Punchy', 'Kicky', 'Spotty', 'Touchy', 'Brenda']
total = len(flock1) + len(flock2)

manager = enlighten.Manager()
pbar = manager.counter(total=total, desc='Counting Sheep', unit='sheep')

for sheep in pbar(flock1, flock2):
 time.sleep(0.2)
 print('%s: Baaa' % sheep)

Frequently Asked Questions

Why is Enlighten called Enlighten?

A progress bar's purpose is to inform the user about an ongoing process.
Enlighten, meaning "to inform", seems a fitting name.
(Plus any names related to progress were already taken)

Is Windows supported?

Enlighten has supported Windows since version 1.3.0.

Windows does not currently support resizing.

Enlighten also works relatively well in Linux-like subsystems for Windows such as
Cygwin [https://cygwin.com/] or
Windows Subsystem for Linux [https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux].

Is PyCharm supported?

PyCharm uses multiple consoles and the behavior differs depending on how the code is called.

Enlighten works natively in the PyCharm command terminal.

To use Enlighten with Run or Debug, terminal emulation must be enabled.
Navigate to Run -> Edit Configurations -> Templates -> Python
and select Emulate terminal in output console.

The PyCharm Python console is currently not supported because sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout]
does not reference a valid TTY.

Can you add support for _______ terminal?

We are happy to add support for as many terminals as we can.
However, not all terminals can be supported. There a few requirements.

	The terminal must be detectable programmatically

We need to be able to identify the terminal in some reasonable way
and differentiate it from other terminals. This could be through environment variables,
the platform [https://docs.python.org/3/library/platform.html#module-platform] module, or some other method.

	A subset of terminal codes must be supported

While these codes may vary among terminals, the capability must be
provided and activated by printing a terminal sequence.
The required codes are listed below.

	move / CUP - Cursor Position

	hide_cursor / DECTCEM - Text Cursor Enable Mode

	show_cursor / DECTCEM - Text Cursor Enable Mode

	csr / DECSTBM - Set Top and Bottom Margins

	clear_eos / ED - Erase in Display

	clear_eol / EL - Erase in Line

	feed / CUD - Cursor Down (Or scroll with linefeed)

	Terminal dimensions must be detectable

The height and width of the terminal must be available to the running process.

API Reference

Classes

	
class enlighten.Manager(stream=None, counter_class=Counter, **kwargs)

	
	Parameters

	
	stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- Output stream. If None [https://docs.python.org/3/library/constants.html#None],
defaults to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout]

	counter_class (class [https://docs.python.org/3/glossary.html#term-class]) -- Progress bar class (Default: Counter)

	set_scroll (bool [https://docs.python.org/3/library/functions.html#bool]) -- Enable scroll area redefinition (Default: True [https://docs.python.org/3/library/constants.html#True])

	companion_stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- See companion_stream
below. (Default: None [https://docs.python.org/3/library/constants.html#None])

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- Status (Default: True)

	no_resize (bool [https://docs.python.org/3/library/functions.html#bool]) -- Disable resizing support

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Any additional keyword arguments [https://docs.python.org/3/glossary.html#term-keyword-argument]
will be used as default values when counter() is called.

Manager class for outputting progress bars to streams attached to TTYs

Progress bars are displayed at the bottom of the screen
with standard output displayed above.

companion_stream

A companion stream is a file object [https://docs.python.org/3/glossary.html#term-file-object] that shares a TTY with
the primary output stream. The cursor position in the companion stream will be
moved in coordination with the primary stream.

If the value is None [https://docs.python.org/3/library/constants.html#None], sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] and sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr] will
be used as companion streams. Unless explicitly
specified, a stream which is not attached to a TTY (the case when
redirected to a file), will not be used as a companion stream.

	
counter(position=None, **kwargs)

	
	Parameters

	
	position (int [https://docs.python.org/3/library/functions.html#int]) -- Line number counting from the bottom of the screen

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Any additional keyword arguments [https://docs.python.org/3/glossary.html#term-keyword-argument]
are passed to Counter

	Returns

	Instance of counter class

	Return type

	Counter

Get a new progress bar instance

If position is specified, the counter's position can change dynamically if
additional counters are called without a position argument.

	
stop()

	Clean up and reset terminal

This method should be called when the manager and counters will no longer be needed.

Any progress bars that have leave set to True [https://docs.python.org/3/library/constants.html#True] or have not been closed
will remain on the console. All others will be cleared.

Manager and all counters will be disabled.

	
class enlighten.Counter(**kwargs)

	
	Parameters

	
	additional_fields (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Additional fields used for formating

	bar_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Progress bar format, see Format below

	count (int [https://docs.python.org/3/library/functions.html#int]) -- Initial count (Default: 0)

	counter_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Counter format, see Format below

	color (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Series color as a string or RGB tuple see Series Color

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Description

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- Status (Default: True [https://docs.python.org/3/library/constants.html#True])

	leave (True) -- Leave progress bar after closing (Default: True [https://docs.python.org/3/library/constants.html#True])

	manager (Manager) -- Manager instance. Creates instance if not specified.

	min_delta (float [https://docs.python.org/3/library/functions.html#float]) -- Minimum time, in seconds, between refreshes (Default: 0.1)

	offset (int [https://docs.python.org/3/library/functions.html#int]) -- Number of non-printable characters to account for when formatting

	series (sequence [https://docs.python.org/3/glossary.html#term-sequence]) -- Progression series, see Series below

	stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- Output stream. Not used when instantiated through a manager

	total (int [https://docs.python.org/3/library/functions.html#int]) -- Total count when complete

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Unit label

Progress bar and counter class

A Counter instance can be created with the Manager.counter() method
or, when a standalone progress bar for simple applications is required, the Counter
class can be called directly. The output stream will default to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] unless
stream is set.

Note

With the default values for bar_format and counter_format,
floats [https://docs.python.org/3/library/functions.html#float] can not be used for total, count, or provided to
update(). In order to use floats [https://docs.python.org/3/library/functions.html#float], provide custom
formats to bar_format and counter_format. See Format below.

Series

The progress bar is constructed from the characters in series. series must be a
sequence [https://docs.python.org/3/glossary.html#term-sequence] (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) containing
single characters.

Default progress series (series):

' ▏▎▍▌▋▊▉█'

The first character is the fill character. When the count is 0,
the bar will be made up of only this character.
In the example below, characters 5 through 9 are fill characters.

The last character is the full character. When the count is equal to total,
the bar will be made up of only this character.
In the example below, characters 0 through 3 are full characters.

The remaining characters are fractional characters used to more accurately represent the
transition between the full and fill characters.
In the example below, character 4 is a fractional character.

'45% |████▋ |'
 '0123456789'

Series Color

The characters specified by series will be displayed in the terminal's current
foreground color. This can be overwritten with the color argument.

color can be specified as None [https://docs.python.org/3/library/constants.html#None], a string [https://docs.python.org/3/library/string.html#module-string] or, an iterable [https://docs.python.org/3/glossary.html#term-iterable]
of three integers, 0 - 255, describing an RGB color.

For backward compatibility, a color can be expressed as an integer 0 - 255, but this
is deprecated in favor of named or RGB colors.

If a terminal is not capable of 24-bit color, and is given a color outside of its
range, the color will be downconverted to a supported color.

Valid colors for 8 color terminals:

	black

	blue

	cyan

	green

	magenta

	red

	white

	yellow

Additional colors for 16 color terminals:

	bright_black

	bright_blue

	bright_cyan

	bright_green

	bright_magenta

	bright_red

	bright_white

	bright_yellow

See this chart [https://blessed.readthedocs.io/en/stable/colors.html#id3]
for a complete list of supported color strings.

Note

If an invalid color is specified, an AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] will be raised

Format

If total is None [https://docs.python.org/3/library/constants.html#None] or count becomes higher than total,
the counter format will be used instead of the progress bar format.

Default counter format (counter_format):

'{desc}{desc_pad}{count:d} {unit}{unit_pad}{elapsed}, {rate:.2f}{unit_pad}{unit}/s]{fill}'

Example output
'Loaded 30042 Files [00:01, 21446.45 Files/s] '

Default progress bar format (bar_format):

'{desc}{desc_pad}{percentage:3.0f}%|{bar}| {count:{len_total}d}/{total:d} [{elapsed}<{eta}, {rate:.2f}{unit_pad}{unit}/s]'

Example output
'Processing 22%|█████▊ | 23/101 [00:27<01:32, 0.84 Files/s]'

Available fields:

	count(int [https://docs.python.org/3/library/functions.html#int]) - Current value of count

	desc(str [https://docs.python.org/3/library/stdtypes.html#str]) - Value of desc

	desc_pad(str [https://docs.python.org/3/library/stdtypes.html#str]) - A single space if desc is set, otherwise empty

	elapsed(str [https://docs.python.org/3/library/stdtypes.html#str]) - Time elapsed since instance was created

	rate(float [https://docs.python.org/3/library/functions.html#float]) - Average increments per second since instance was created

	unit(str [https://docs.python.org/3/library/stdtypes.html#str]) - Value of unit

	unit_pad(str [https://docs.python.org/3/library/stdtypes.html#str]) - A single space if unit is set, otherwise empty

Additional fields for bar_format only:

	bar(str [https://docs.python.org/3/library/stdtypes.html#str]) - Progress bar draw with characters from series

	eta(str [https://docs.python.org/3/library/stdtypes.html#str]) - Estimated time to completion

	len_total(int [https://docs.python.org/3/library/functions.html#int]) - Length of total when converted to a string

	percentage(float [https://docs.python.org/3/library/functions.html#float]) - Percentage complete

	total(int [https://docs.python.org/3/library/functions.html#int]) - Value of total

Addition fields for counter_format only:

	fill(str [https://docs.python.org/3/library/stdtypes.html#str]) - blank spaces, number needed to fill line

Additional fields when subcounters are used:

	count_n (int [https://docs.python.org/3/library/functions.html#int]) - Current value of count

	count_0(int [https://docs.python.org/3/library/functions.html#int]) - Remaining count after deducting counts for all subcounters

	percentage_n (float [https://docs.python.org/3/library/functions.html#float]) - Percentage complete (bar_format only)

	percentage_0(float [https://docs.python.org/3/library/functions.html#float]) - Remaining percentage after deducting percentages
for all subcounters (bar_format only)

Note

n denotes the order the subcounter was added starting at 1.
For example, count_1 is the count for the first subcounter added
and count_2 is the count for the second subcounter added.

Additional fields when add_subcounter() is called with
all_fields set to True [https://docs.python.org/3/library/constants.html#True]:

	eta_n (str [https://docs.python.org/3/library/stdtypes.html#str]) - Estimated time to completion (bar_format only)

	rate_n (float [https://docs.python.org/3/library/functions.html#float]) - Average increments per second since parent was created

User-defined fields:

The additional_fields parameter can be used to pass a dictionary of additional
user-defined fields. The dictionary values can be updated after initialization to allow
for dynamic fields. Any fields that share names with built-in fields are ignored.

Offset

When offset is None [https://docs.python.org/3/library/constants.html#None], the width of the bar portion of the progress bar and
the fill characters for counter will be automatically determined,
taking into account terminal escape sequences that may be included in the string.

Under special circumstances, and to permit backward compatibility, offset may be
explicitly set to an int [https://docs.python.org/3/library/functions.html#int] value. When explicitly set, automatic detection of
escape sequences is disabled.

Instance Attributes

	
count

	int [https://docs.python.org/3/library/functions.html#int] - Current count

	
desc

	str [https://docs.python.org/3/library/stdtypes.html#str] - Description

	
elapsed

	float [https://docs.python.org/3/library/functions.html#float] - Time since start
(since last update if count`equals :py:attr:`total)

	
enabled

	bool [https://docs.python.org/3/library/functions.html#bool] - Current status

	
manager

	Manager - Manager Instance

	
position

	int [https://docs.python.org/3/library/functions.html#int] - Current position

	
total

	int [https://docs.python.org/3/library/functions.html#int] - Total count when complete

	
unit

	str [https://docs.python.org/3/library/stdtypes.html#str] - Unit label

	
add_subcounter(color, count=0, all_fields=False)

	
	Parameters

	
	color (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Series color as a string or RGB tuple see Series Color

	count (int [https://docs.python.org/3/library/functions.html#int]) -- Initial count (Default: 0)

	all_fields (bool [https://docs.python.org/3/library/functions.html#bool]) -- Populate rate and eta formatting fields (Default: False)

	Returns

	Subcounter instance

	Return type

	SubCounter

Add a subcounter for multicolored progress bars

	
clear(flush=True)

	
	Parameters

	flush (bool [https://docs.python.org/3/library/functions.html#bool]) -- Flush stream after clearing progress bar (Default:True)

Clear progress bar

	
close(clear=False)

	Do final refresh and remove from manager

If leave is True, the default, the effect is the same as refresh().

	
color

	Color property
Preferred to be a string or iterable of three integers for RGB
Single integer supported for backwards compatibility

	
format(width=None, elapsed=None)

	
	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) -- Width in columns to make progress bar

	elapsed (float [https://docs.python.org/3/library/functions.html#float]) -- Time since started. Automatically determined if None [https://docs.python.org/3/library/constants.html#None]

	Returns

	Formatted progress bar or counter

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Format progress bar or counter

	
refresh(flush=True, elapsed=None)

	
	Parameters

	
	flush (bool [https://docs.python.org/3/library/functions.html#bool]) -- Flush stream after writing progress bar (Default:True)

	elapsed (float [https://docs.python.org/3/library/functions.html#float]) -- Time since started. Automatically determined if None [https://docs.python.org/3/library/constants.html#None]

Redraw progress bar

	
subcount

	Sum of counts from all subcounters

	
update(incr=1, force=False)

	
	Parameters

	
	incr (int [https://docs.python.org/3/library/functions.html#int]) -- Amount to increment count (Default: 1)

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Force refresh even if min_delta has not been reached

Increment progress bar and redraw

Progress bar is only redrawn if min_delta seconds past since the last update

	
class enlighten.SubCounter(parent, color=None, count=0, all_fields=False)

	A child counter for multicolored progress bars.

This class tracks a portion of multicolored progress bar and should be initialized
through Counter.add_subcounter()

Instance Attributes

	
count

	int [https://docs.python.org/3/library/functions.html#int] - Current count

	
parent

	Counter - Parent counter

	
update(incr=1, force=False)

	
	Parameters

	
	incr (int [https://docs.python.org/3/library/functions.html#int]) -- Amount to increment count (Default: 1)

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Force refresh even if min_delta has not been reached

Increment progress bar and redraw

Both this counter and the parent are incremented.

Progress bar is only redrawn if min_delta seconds past since the last update on the parent.

	
update_from(source, incr=1, force=False)

	
	Parameters

	
	source (SubCounter) -- SubCounter or Counter
to increment from

	incr (int [https://docs.python.org/3/library/functions.html#int]) -- Amount to increment count (Default: 1)

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Force refresh even if min_delta has not been reached

Move a value to this counter from another counter.

source must be the parent Counter instance or a SubCounter with
the same parent

Functions

	
enlighten.get_manager(stream=None, counter_class=Counter, **kwargs)

	
	Parameters

	
	stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- Output stream. If None [https://docs.python.org/3/library/constants.html#None],
defaults to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout]

	counter_class (class [https://docs.python.org/3/glossary.html#term-class]) -- Progress bar class (Default: Counter)

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Any additional keyword arguments [https://docs.python.org/3/glossary.html#term-keyword-argument]
will passed to the manager class.

	Returns

	Manager instance

	Return type

	Manager

Convenience function to get a manager instance

If stream is not attached to a TTY, the Manager instance is disabled.

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 enlighten	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_subcounter() (enlighten.Counter method)

C

 	
 	clear() (enlighten.Counter method)

 	close() (enlighten.Counter method)

 	color (enlighten.Counter attribute)

 	
 	count (enlighten.Counter attribute)

 	(enlighten.SubCounter attribute)

 	Counter (class in enlighten)

 	counter() (enlighten.Manager method)

D

 	
 	desc (enlighten.Counter attribute)

E

 	
 	elapsed (enlighten.Counter attribute)

 	
 	enabled (enlighten.Counter attribute)

 	enlighten (module)

F

 	
 	format() (enlighten.Counter method)

G

 	
 	get_manager() (in module enlighten)

M

 	
 	Manager (class in enlighten)

 	
 	manager (enlighten.Counter attribute)

P

 	
 	parent (enlighten.SubCounter attribute)

 	
 	position (enlighten.Counter attribute)

R

 	
 	refresh() (enlighten.Counter method)

S

 	
 	stop() (enlighten.Manager method)

 	
 	subcount (enlighten.Counter attribute)

 	SubCounter (class in enlighten)

T

 	
 	total (enlighten.Counter attribute)

U

 	
 	unit (enlighten.Counter attribute)

 	update() (enlighten.Counter method)

 	(enlighten.SubCounter method)

 	
 	update_from() (enlighten.SubCounter method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/demo.gif
1/15 [00:00<00:02, 5.66 initials/s]

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/demo.gif
1/15 [00:00<00:02, 5.66 initials/s]

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Overview

_static/up.png

_static/up-pressed.png

