

Overview

Enlighten Progress Bar is a console progress bar module for Python. (Yes, another one.)
The main advantage of Enlighten is it allows writing to stdout and stderr without any
redirection.

[image: _images/multiple_logging.gif]

Installation

PIP

$ pip install enlighten

RPM

RPMs are available in the Fedora [https://fedoraproject.org/] and EPEL [https://fedoraproject.org/wiki/EPEL] repositories

EL6 and EL7 (RHEL/CentOS/Scientific)

(EPEL [https://fedoraproject.org/wiki/EPEL] repositories must be configured [https://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F])

$ yum install python-enlighten

Fedora

$ dnf install python2-enlighten
$ dnf install python3-enlighten

Examples

Basic

For a basic status bar, invoke the Counter class directly.

import time
import enlighten

pbar = enlighten.Counter(total=100, desc='Basic', unit='ticks')
for num in range(100):
 time.sleep(0.1) # Simulate work
 pbar.update()

Advanced

To maintain multiple progress bars simultaneously or write to the console, a manager is required.

Advanced output will only work when the output stream, sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] by default,
is attached to a TTY. get_manager() can be used to get a manager instance.
It will return a disabled Manager instance if the stream is not attached to a TTY
and an enabled instance if it is.

import time
import enlighten

manager = enlighten.get_manager()
ticks = manager.counter(total=100, desc='Ticks', unit='ticks')
tocks = manager.counter(total=20, desc='Tocks', unit='tocks')

for num in range(100):
 time.sleep(0.1) # Simulate work
 print(num)
 ticks.update()
 if not num % 5:
 tocks.update()

manager.stop()

Counters

The Counter class has two output formats, progress bar and counter.

The progress bar format is used when a total is not None [https://docs.python.org/3/library/constants.html#None] and the count is less than the
total. If neither of these conditions are met, the counter format is used:

import time
import enlighten

counter = enlighten.Counter(desc='Basic', unit='ticks')
for num in range(100):
 time.sleep(0.1) # Simulate work
 counter.update()

Additional Examples

	basic - Basic progress bar

	context manager - Managers and counters as context managers

	floats - Support totals and counts that are floats [https://docs.python.org/3/library/functions.html#float]

	multiple with logging - Nested progress bars and logging

	FTP downloader - Show progress downloading files from FTP

Customization

Enlighten is highly configurable. For information on modifying the output, see the
Series and Format
sections of the Counter documentation.

Common Patterns

Enable / Disable

A program may want to disable progress bars based on a configuration setting as well as if
output redirection occurs.

import sys
import enlighten

Example configuration object
config = {'stream': sys.stdout,
 'useCounter': False}

enableCounter = config['useCounter'] and stream.isatty()
manager = enlighten.Manager(stream=config['stream'], enabled=enableCounter)

The get_manager() function slightly simplifies this

import enlighten

Example configuration object
config = {'stream': None, # Defaults to sys.stdout
 'useCounter': False}

manager = enlighten.get_manager(stream=config['stream'], enabled=config['useCounter'])

Context Managers

Both Counter and Manager
can be used as context managers.

import enlighten

SPLINES = 100

with enlighten.Manager() as manager:
 with manager.counter(total=SPLINES, desc='Reticulating:', unit='splines') as retic:
 for num in range(SPLINES + 1):
 retic.update()

Frequently Asked Questions

Why is Enlighten called Enlighten?

A progress bar's purpose is to inform the user about an ongoing process.
Enlighten, meaning "to inform", seems a fitting name.
(Plus any names related to progress were already taken)

Is Windows supported?

Enlighten is subject to the same
limitations [http://blessed.readthedocs.io/en/latest/intro.html#brief-overview]
as the blessed [https://github.com/jquast/blessed] module which currently doesn't
work with windows.

If you have ideas,
patches [https://github.com/Rockhopper-Technologies/enlighten/pulls]
are welcomed.

API Reference

Classes

	
class enlighten.Manager(stream=None, counter_class=Counter, **kwargs)

	
	Parameters

	
	stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- Output stream. If None [https://docs.python.org/3/library/constants.html#None],
defaults to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout]

	counter_class (class [https://docs.python.org/3/glossary.html#term-class]) -- Progress bar class (Default: Counter)

	set_scroll (bool [https://docs.python.org/3/library/functions.html#bool]) -- Enable scroll area redefinition (Default: True [https://docs.python.org/3/library/constants.html#True])

	companion_stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- See companion_stream
below. (Default: None [https://docs.python.org/3/library/constants.html#None])

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- Status (Default: True)

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Any additional keyword arguments [https://docs.python.org/3/glossary.html#term-keyword-argument]
will be used as default values when counter() is called.

Manager class for outputting progress bars to streams attached to TTYs

Progress bars are displayed at the bottom of the screen
with standard output displayed above.

companion_stream

A companion stream is a file object [https://docs.python.org/3/glossary.html#term-file-object] that shares a TTY with
the primary output stream. The cursor position in the companion stream will be
moved in coordination with the primary stream.

If the value is None [https://docs.python.org/3/library/constants.html#None], sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] and sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr] will
be used as companion streams. Unless explicitly
specified, a stream which is not attached to a TTY (the case when
redirected to a file), will not be used as a companion stream.

	
counter(position=None, **kwargs)

	
	Parameters

	
	position (int [https://docs.python.org/3/library/functions.html#int]) -- Line number counting from the bottom of the screen

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Any additional keyword arguments [https://docs.python.org/3/glossary.html#term-keyword-argument]
are passed to Counter

	Returns

	Instance of counter class

	Return type

	Counter

Get a new progress bar instance

If position is specified, the counter's position can change dynamically if
additional counters are called without a position argument.

	
stop()

	Clean up and reset terminal

This method should be called when the manager and counters will no longer be needed.

Any progress bars that have leave set to True [https://docs.python.org/3/library/constants.html#True] or have not been closed
will remain on the console. All others will be cleared.

Manager and all counters will be disabled.

	
class enlighten.Counter(**kwargs)

	
	Parameters

	
	bar_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Progress bar format, see Format below

	count (int [https://docs.python.org/3/library/functions.html#int]) -- Initial count (Default: 0)

	counter_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Counter format, see Format below

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Description

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- Status (Default: True)

	leave (True) -- Leave progress bar after closing (Default: True [https://docs.python.org/3/library/constants.html#True])

	manager (Manager) -- Manager instance. Creates instance if not specified

	min_delta (float [https://docs.python.org/3/library/functions.html#float]) -- Minimum time, in seconds, between refreshes (Default: 0.1)

	series (sequence [https://docs.python.org/3/glossary.html#term-sequence]) -- Progression series, see Series below

	stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- Output stream. Not used when instantiated through a manager

	total (int [https://docs.python.org/3/library/functions.html#int]) -- Total count when complete

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Unit label

Progress bar and counter class

A Counter instance can be created with the Manager.counter() method
or, when a standalone progress bar for simple applications is required, the Counter
class can be called directly. The output stream will default to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] unless
stream is set.

Note

With the default values for bar_format and counter_format,
floats [https://docs.python.org/3/library/functions.html#float] can not be used for total, count, or provided to
update(). In order to use floats [https://docs.python.org/3/library/functions.html#float], provide custom
formats to bar_format and counter_format. See Format below.

Series

The progress bar is constructed from the characters in series. series must be a
sequence [https://docs.python.org/3/glossary.html#term-sequence] (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) containing
single characters.

Default progress series (series):

' ▏▎▍▌▋▊▉█'

The first character is the fill character. When the count is 0,
the bar will be made up of only this character.
In the example below, characters 5 through 9 are fill characters.

The last character is the full character. When the count is equal to total,
the bar will be made up of only this character.
In the example below, characters 0 through 3 are full characters.

The remaining characters are fractional characters used to more accurately represent the
transition between the full and fill characters.
In the example below, character 4 is a fractional character.

'45% |████▋ |'
 '0123456789'

Format

If total is None [https://docs.python.org/3/library/constants.html#None] or count becomes higher than total,
the counter format will be used instead of the progress bar format.

Default counter format (counter_format):

'{desc}{desc_pad}{count:d} {unit}{unit_pad}{elapsed}, {rate:.2f}{unit_pad}{unit}/s]{fill}'

Example output
'Loaded 30042 Files [00:01, 21446.45 Files/s] '

Default progress bar format (bar_format):

'{desc}{desc_pad}{percentage:3.0f}%|{bar}| {count:{len_total}d}/{total:d} [{elapsed}<{eta}, {rate:.2f}{unit_pad}{unit}/s]'

Example output
'Processing 22%|█████▊ | 23/101 [00:27<01:32, 0.84 Files/s]'

Available fields:

	count(int [https://docs.python.org/3/library/functions.html#int]) - Current value of count

	desc(str [https://docs.python.org/3/library/stdtypes.html#str]) - Value of desc

	desc_pad(str [https://docs.python.org/3/library/stdtypes.html#str]) - A single space if desc is set, otherwise empty

	elapsed(str [https://docs.python.org/3/library/stdtypes.html#str]) - Time elapsed since instance was created

	rate(float [https://docs.python.org/3/library/functions.html#float]) - Average increments per second since instance was created

	unit(str [https://docs.python.org/3/library/stdtypes.html#str]) - Value of unit

	unit_pad(str [https://docs.python.org/3/library/stdtypes.html#str]) - A single space if unit is set, otherwise empty

Addition fields for bar_format only:

	bar(str [https://docs.python.org/3/library/stdtypes.html#str]) - Progress bar draw with characters from series

	eta(str [https://docs.python.org/3/library/stdtypes.html#str]) - Estimated time to completion

	len_total(int [https://docs.python.org/3/library/functions.html#int]) - Length of total when converted to a string

	percentage(float [https://docs.python.org/3/library/functions.html#float]) - Percentage complete

	total(int [https://docs.python.org/3/library/functions.html#int]) - Value of total

Addition fields for counter_format only:

	fill(str [https://docs.python.org/3/library/stdtypes.html#str]) - blank spaces, number needed to fill line

Instance Attributes

	
count

	int [https://docs.python.org/3/library/functions.html#int] - Current count

	
desc

	str [https://docs.python.org/3/library/stdtypes.html#str] - Description

	
elapsed

	float [https://docs.python.org/3/library/functions.html#float] - Time since start
(since last update if count`equals :py:attr:`total)

	
enabled

	bool [https://docs.python.org/3/library/functions.html#bool] - Current status

	
manager

	Manager - Manager Instance

	
position

	int [https://docs.python.org/3/library/functions.html#int] - Current position

	
total

	int [https://docs.python.org/3/library/functions.html#int] - Total count when complete

	
unit

	str [https://docs.python.org/3/library/stdtypes.html#str] - Unit label

Functions

	
enlighten.get_manager(stream=None, counter_class=Counter, **kwargs)

	
	Parameters

	
	stream (file object [https://docs.python.org/3/glossary.html#term-file-object]) -- Output stream. If None [https://docs.python.org/3/library/constants.html#None],
defaults to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout]

	counter_class (class [https://docs.python.org/3/glossary.html#term-class]) -- Progress bar class (Default: Counter)

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Any additional keyword arguments [https://docs.python.org/3/glossary.html#term-keyword-argument]
will passed to the manager class.

	Returns

	Manager instance

	Return type

	Manager

Convenience function to get a manager instance

If stream is not attached to a TTY, the Manager instance is disabled.

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 enlighten	

Index

 C
 | D
 | E
 | G
 | M
 | P
 | S
 | T
 | U

C

 	
 	count (enlighten.Counter attribute)

 	
 	Counter (class in enlighten)

 	counter() (enlighten.Manager method)

D

 	
 	desc (enlighten.Counter attribute)

E

 	
 	elapsed (enlighten.Counter attribute)

 	
 	enabled (enlighten.Counter attribute)

 	enlighten (module)

G

 	
 	get_manager() (in module enlighten)

M

 	
 	Manager (class in enlighten)

 	
 	manager (enlighten.Counter attribute)

P

 	
 	position (enlighten.Counter attribute)

S

 	
 	stop() (enlighten.Manager method)

T

 	
 	total (enlighten.Counter attribute)

U

 	
 	unit (enlighten.Counter attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/multiple_logging.gif

_images/multiple_logging.gif

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Overview

_static/up.png

_static/up-pressed.png

